Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guang Chen, ${ }^{\text {a }}$ Zhi-Ping Bai ${ }^{\text {b }}$ and Sheng-Ju Qu ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China, and ${ }^{\mathbf{b}}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail:
qufuchenguang@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.099$
Data-to-parameter ratio $=18.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[dipyridylcopper(II)]-di- μ-thiocyanato]

The title complex, $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]_{n}$, is a polymeric copper(II) compound. Each $\mathrm{Cu}^{\mathrm{II}}$ atom of the complex has a primary coordination by four N atoms from two pyridyl and two thiocyanate ligands in mutually trans orientations, which define the equatorial plane. Two weakly coordinated S atoms from the thiocyanate ligands of adjacent complexes occupy axial positions, giving each $\mathrm{Cu}^{\mathrm{II}}$ atom an axially distorted octahedral geometry and forming one-dimensional polymeric chains along the c axis. There are three molecules in the triclinic unit cell with one of the $\mathrm{Cu}^{\mathrm{II}}$ atoms lying on a centre of inversion.

Comment

Transition metal complexes are very important in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). As a part of our investigations of the structures of copper(II) derivatives, we have prepared a new $\mathrm{Cu}^{\mathrm{II}}$ compound, (I) with pyridine and thiocyanate ligands, and its structure is reported here.

In complex (I), the unit cell in the crystal contains three $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}(\mathrm{NCS})_{2}\right]$ groups, as one of the $\mathrm{Cu}^{\text {II }}$ atoms lies on a centre of inversion. Each $\mathrm{Cu}^{\text {II }}$ ion is coordinated by four N atoms from two pyridyl and two N-bound thiocyanate ligands, each in a mutually trans orientation, forming a square plane. Additional semi-coordinate binding by the thiocyanate S atoms of adjacent complexes, with $\mathrm{Cu}-\mathrm{S}$ distances of 2.991 (2) and 3.085 (2) \AA, leads to an axially distorted octahedral coordination environment for each $\mathrm{Cu}^{\mathrm{II}}$ atom and the formation of one-dimensional polymeric chains along the c axis.

Experimental

Pyridine ($0.2 \mathrm{mmol}, 15.8 \mathrm{mg}$), $\mathrm{NH}_{4} \mathrm{NCS}(0.2 \mathrm{mmol}, 15.2 \mathrm{mg})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ were dissolved in EtOH $(20 \mathrm{ml})$. The mixture was stirred for 30 min at room temperature and filtered. After the filtrate had been kept in air for 12 d , blue crystals were formed.

Received 27 October 2005 Accepted 10 November 2005 Online 30 November 2005

Figure 1
The structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffixes A and B are related to atoms without a suffix by the symmetry codes $(2-x, 2-y, 2-z)$ and (1 $-x, 1-y, 1-z$), respectively.

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=337.90$
Triclinic, $P \overline{1}$
$a=8.528(2) \AA$
$b=9.128(1) \AA$
$c=15.371(1) \AA$
$\alpha=91.737(1)^{\circ}$
$\beta=97.043(1)^{\circ}$
$\gamma=115.639(1)^{\circ}$
$V=1065.9(3) \AA^{\circ}$

$$
\begin{aligned}
& Z=3 \\
& D_{x}=1.579 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 2902 reflections
$\theta=2.5-28.1^{\circ}$
$\mu=1.82 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.32 \times 0.28 \times 0.23 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detecto
\quad diffractometer
ω scans
Absorption correction: multi-scan Absorption correction: multi-sc
$\quad(S A D A B S$; Sheldrick, 1996)
$T_{\text {min }}=0.594, T_{\text {max }}=0.680$
9264 measured reflections
4737 independent reflections
3626 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0534 P)^{2}\right]$
$w R\left(F^{2}\right)=0.099$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.01$	$(\Delta / \sigma)_{\max }<0.001$
4737 reflections	$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
259 parameters	$\Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 2$	$1.932(2)$	$\mathrm{Cu} 1-\mathrm{S} 3^{\mathrm{ii}}$	$3.045(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.936(2)$	$\mathrm{Cu} 2-\mathrm{N} 5$	$1.933(2)$
$\mathrm{Cu} 1-\mathrm{N} 4$	$2.049(2)$	$\mathrm{Cu} 2-\mathrm{N} 6$	$2.044(2)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.055(2)$	$\mathrm{Cu} 2-\mathrm{S} 1$	$3.085(2)$
$\mathrm{Cu} 1-\mathrm{S} 2^{\mathrm{i}}$	$2.991(2)$		
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$179.93(6)$	$\mathrm{S} 3^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 3$	$89.9(2)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	$88.88(7)$	$\mathrm{S} 3^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 4$	$89.36(5)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 4$	$91.06(7)$	$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{S} 3^{\mathrm{ii}}$	$176.1(2)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$89.46(7)$	$\mathrm{N} 5-\mathrm{Cu} 2-\mathrm{N} 5^{\mathrm{ii}}$	180
$\mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$90.60(7)$	$\mathrm{N} 5-\mathrm{Cu} 2-\mathrm{N} 6$	$89.70(7)$
$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 3$	$178.19(6)$	$\mathrm{N} 5{ }^{\mathrm{ii}}-\mathrm{Cu} 2-\mathrm{N} 6$	$90.30(7)$
$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$84.7(2)$	$\mathrm{N} 6-\mathrm{Cu} 2-\mathrm{N} 6^{\mathrm{ii}}$	180
$\mathrm{~S} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	$95.2(2)$	$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{N} 5$	$87.7(2)$
$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 3$	$90.3(2)$	$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{N} 5^{\mathrm{ii}}$	$92.3(2)$
$\mathrm{S}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 4$	$90.6(2)$	$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{N} 6$	$89.1(2)$
$\mathrm{S}^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 1$	$91.4(2)$	$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{N} 6^{\mathrm{ii}}$	$90.9(2)$
$\mathrm{S} 3^{\mathrm{ii}}-\mathrm{Cu} 1-\mathrm{N} 2$	$88.7(2)$	$\mathrm{S} 1-\mathrm{Cu} 2-\mathrm{S} 1^{\mathrm{ii}}$	180

Symmetry codes: (i) $-x+2,-y+2,-z+2$; (ii) $-x+1,-y+1,-z+1$.
All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ values set to $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We thank Qufu Normal University for support of this research.

References

Bhatia, S. C., Bindlish, J. M., Saini, A. R. \& Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. \& Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

